If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8z^2+15z-27=0
a = 8; b = 15; c = -27;
Δ = b2-4ac
Δ = 152-4·8·(-27)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-33}{2*8}=\frac{-48}{16} =-3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+33}{2*8}=\frac{18}{16} =1+1/8 $
| 6/15d+9/30d−1/6d=d+1.5−2/12d | | (8x+1)(7x+4)=0 | | 2(n)=105+n | | 5/7=c1/4 | | -2(3-3)+4=5x+3 | | 8(x-1)(x-6)=0 | | 0.07x=45 | | 5.4z=35.1* | | x+12.2=34.7* | | 1=a+5 | | 6(x+5)+2=8(2x-5+22 | | 47° + x° + 33° = 180° x° = ° | | z-3z=9 | | y’-y=13 | | s-3.8=2.15 | | s-3.9=056 | | 7=(u+7) | | 1200(1.045)^t=3000 | | 4(x+8)=76 | | 3(x-2)=7(x-1)+3 | | n–8=–12 | | p=100(1.8^50) | | x+2.8=13 | | -4(5x-7)=-12 | | 3x+15-6x=-18+6x | | z3+7=11 | | 30x+5=120 | | a+5.5=9.14 | | -2x+3=-x=12 | | 7-2e−1−3=6+6e | | 0.7x+0.25=-0.5x-1 | | 28x+4=140 |